Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells.
نویسندگان
چکیده
Abnormal vascular smooth muscle cell (VSMC) proliferation is a key feature of atherosclerosis and restenosis; however, the mechanisms regulating growth remain unclear. Herein we show that inhibition of the aldehyde-metabolizing enzyme aldose reductase (AR) inhibits NF-kappa B activation during restenosis of balloon-injured rat carotid arteries as well as VSMC proliferation due to tumor necrosis factor alpha (TNF-alpha) stimulation. Inhibition of VSMC growth by AR inhibitors was not accompanied by increase in cell death or apoptosis. Inhibition of AR led to a decrease in the activity of the transcription factor NF-kappa B in culture and in the neointima of rat carotid arteries after balloon injury. Inhibition of AR in VSMC also prevented the activation of NF-kappa B by basic fibroblast growth factor (bFGF), angiotensin-II (Ang-II), and platelet-derived growth factor (PDGF-AB). The VSMC treated with AR inhibitors showed decreased nuclear translocation of NF-kappa B and diminished phosphorylation and proteolytic degradation of I kappa B-alpha. Under identical conditions, treatment with AR inhibitors also prevented the activation of protein kinase C (PKC) by TNF-alpha, bFGF, Ang-II, and PDGF-AB but not phorbol esters, indicating that AR inhibitors prevent PKC stimulation or the availability of its activator but not PKC itself. Treatment with antisense AR, which decreased the AR activity by >80%, attenuated PKC activation in TNF-alpha, bFGF, Ang-II, and PDGF-AB-stimulated VSMC and prevented TNF-alpha-induced proliferation. Collectively, these data suggest that inhibition of NF-kappa B may be a significant cause of the antimitogenic effects of AR inhibition and that this may be related to disruption of PKC-associated signaling in the AR-inhibited cells.
منابع مشابه
Contribution of aldose reductase to diabetic hyperproliferation of vascular smooth muscle cells.
The objective of this study was to determine whether the polyol pathway enzyme aldose reductase mediates diabetes abnormalities in vascular smooth muscle cell (SMC) growth. Aldose reductase inhibitors (tolrestat or sorbinil) or antisense aldose reductase mRNA prevented hyperproliferation of cultured rat aortic SMCs induced by high glucose. Cell cycle progression in the presence of high glucose ...
متن کاملInvolvement of aldose reductase in vascular smooth muscle cell growth and lesion formation after arterial injury.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important feature of atherosclerosis, restenosis, and hypertension. Although multiple mediators of VSMC growth have been identified, few effective pharmacological tools have been developed to limit such growth. Recent evidence indicating an important role for oxidative stress in cell growth led us to investigate the potential ...
متن کاملInvolvement of Aldose Reductase in Vascular Smooth Muscle Cell Growth and Lesion
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is an important feature of atherosclerosis, restenosis, and hypertension. Although multiple mediators of VSMC growth have been identified, few effective pharmacological tools have been developed to limit such growth. Recent evidence indicating an important role for oxidative stress in cell growth led us to investigate the potential ...
متن کاملRequirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells.
Activation of protein kinase C (PKC) has been linked to the development of secondary diabetes complications. However, the underlying molecular mechanisms remain unclear. We examined the contribution of aldose reductase, which catalyzes the first, and the rate-limiting, step of the polyol pathway of glucose metabolism, to PKC activation in vascular smooth muscle cells (VSMCs) isolated from rat a...
متن کاملActivation of nuclear factor-kappaB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase.
Activation of the polyol pathway has been linked to the development of secondary diabetic complications. However, the underlying molecular mechanisms remain unclear. To probe the contribution of this pathway, we examined whether inhibition of aldose reductase, which catalyzes the first step of the pathway, affects hyperglycemia-induced activation of the inflammatory transcription factor nuclear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 35 شماره
صفحات -
تاریخ انتشار 2002